位置:首页 >> 期刊文章
|
摘要:
|
本文提出了一个预测单桩荷载—沉降关系曲线的 BP神经网络模型。该网络模型包含两级网络 ,第一级网络以桩长、桩径、桩侧土层的分布情况 ,桩侧与桩端土层的物理力学指标为输入元 ,来先预测出单桩的极限承载力及其对应的极限沉降 ;第二级网络以第一级网络的输入元和输出元作为其输入元 ,进一步预测各分级荷载下桩的沉降。实际预测精度一般能达到 15 %以内 ,且稳定性较好 ,表明神经网络模型略优于通常的经验公式方法和数值方法
|
A neural network model for predicting the vertical load-settlement behaviour of single piles is proposed in the paper. The proposed network model is a two level network. The primary network, taking the pile length, pile diameter, distribution of soils along the pile,and the physico-mechanical characteristics of soils at the side and the end of the pile as the input data, is to predict the ultimate bearing capacity of the single piles and the corresponding ultimate settlement.The secondary network is to take the input data and the output values of the primary network as its input data to further predict the settlement of the pile under various stages of loads. The accuracy of this model from practical computation is generally within 15% with a good stability, indicating that neural network model is slightly superior to the conventional empirical formula methods and the numerical methods.
|
基金项目:
|
|
作者简介:
|
|
参考文献:
|
[1] 王成华,张薇.人工神经网络在桩基工程中的应用综述[J].岩土力学,2002,23(2):173-178
[2] L eeI M,L eeJH.Prediction of pile bearing capacity using ar-tificial neural networks[J].Computers andGeotechnics.1996,18(3):189-199
[3] 王成华,赵志民.用神经网络法预测单桩竖向极限承载力[J].福建建筑,1999,(1):40-43
[4] 冯紫良,孙海涛,王树娟.用人工神经网络预测单桩竖向极限承载力[J].同济大学学报,1999,27(4):397-401
[5] NawariN O,L iangR,NusairatJ.Artificial intelligence tech-niques for the design and analysis of deep foundations[OL].1999.9.http://geotech.civen.okstate.edu/ejge/ppr9909
[6] 王建华.神经网络法预估水泥搅拌桩单桩沉降[J].土木工程学报,1996,29(1):55-61
[7] 王成华,李武君.钻孔灌注桩极限承载力及沉降的神经网络预测[J].建筑结构,2001,31(10):30-31
[8] 李武君.单桩荷载沉降性状的神经网络与灰色模型预测研究[D].天津:天津大学,2000
[9] 王成华,张薇.反射波法判别桩身完整性的BP神经网络模型[J].岩土力学,2003,(6)
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|
|